PINPOINT LEARNING PAPER THREE REVISION PACKS

44_to_61_Percent_Pinpoint_AI_Pack

Time Allocation = 99mins, Max = 88 Marks

Calculated Grade Boundaries:

Grade	Marks
1+	15
2-	30
2	44
2+	59
3-	74
3	88

Question 1 (AO2): 55% of students got this right (2 marks)

10	Draw two straight lines i 1 trapezium	nside the rectangle to split it into	
	and		
	2 right-angled triang	les.	[2 marks]
	Practise on this diagram		[2 marks]
	Put your answer on this	diagram.	

Question 2 (AO2): 53% of students got this right (4 marks)

10 Suha is going to buy 150 envelopes.

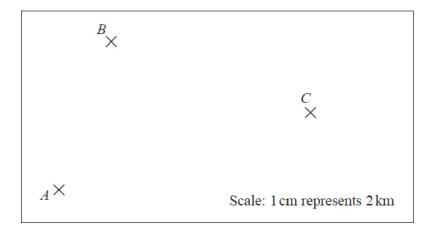
Here is some information about the cost of envelopes in two shops.

Letters2send

Pack of 25 envelopes for £3.49

Stationery World

Pack of 10 envelopes for £2.10 Buy 2 packs get 1 pack free


Suha wants to buy the envelopes as cheaply as possible.

Which shop should Suha buy the 150 envelopes from? You must show how you get your answer.

(Total for Question 10 is 4 marks)

Question 3 (AO2): 53% of students got this right (3 marks)

10	This accurate sca	ale drawing shows	the positions o	f three villages,	A, B and C .
-----------	-------------------	-------------------	-----------------	-------------------	----------------

Tom walks from *A* to *B*. He then walks from *B* to *C*.

Amy walks from *A* to *C*.

Tom walks more kilometres than Amy walks.

How many more?

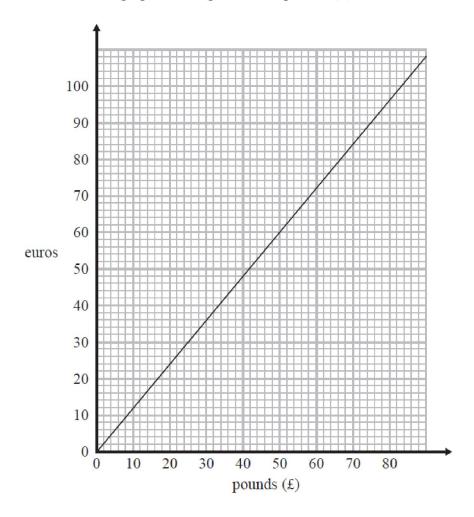
(Total for Question 10 is 3 marks)

Question 4 (AO1): 52% of students got this right (3 marks)

4 Ken buys some fruit.

He buys apples, bananas, peaches and oranges. Ken buys

```
4 apples weighing 125 g each
2 bananas weighing 170 g each
3 peaches weighing 135 g each
```


Each orange has a weight of 90 g.

The fruit has a total weight of 1.785 kg.

(a) Work out how many oranges Ken buys.

Question 5 (AO1): 51% of students got this right (2 marks)

5. You can use this conversion graph to change between pounds (£) and euros.

Change 150 euros into pounds (£).

£		
	(Total 2	marks)

Question 6 (AO2): 49% of students got this right (5 marks)

Here is a rule for working out the volume of a pyramid.
Multiply the base area by the height and then divide by 3
A pyramid has a base area of 9 cm ² and a height of 4 cm.
(a) Use the rule to work out the volume of this pyramid.
cm ³
(2)
A different pyramid has a volume of 20 cm ³ . The base area of this pyramid is 10 cm ² .
(b) Work out the height of this pyramid.
cm
(3)
(Total 5 marks)

Question 7 (AO1): 49% of students got this right (1 marks)

2. Write down an even cube number.			(Total for Question 2 is 1 mark)
2. Write down an even cube number.			
	2.	Write down an even cube number.	

Question 8 (AO1): 49% of students got this right (3 marks)

11. Here are the speeds, in kilometres per hour, of 15 cyclists.

16	22	34	18	24
22	33	28	19	41
23	25	31	40	23

Show this information in a stem and leaf diagram.

Question 9 (AO1): 49% of students got this right (3 marks)

18 Claire buys a new car for £5700.

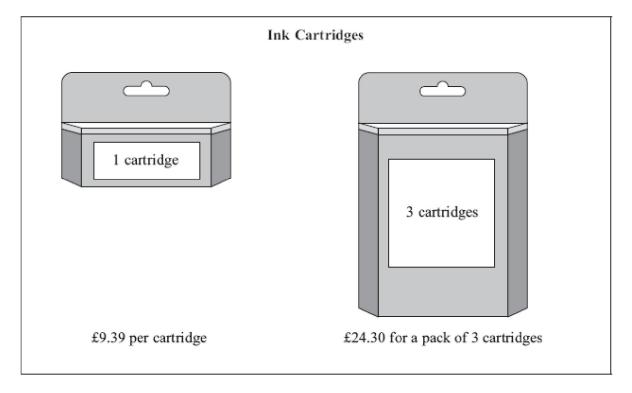
She pays a deposit of 12%

She then pays the rest of the cost in 15 equal monthly payments.

How much is each monthly payment?

Question 10 (AO2): 49% of students got this right (1 marks)

9 The smallest angle of a triangle is 25°. The triangle is enlarged by scale factor 3.


Ben says,

"The smallest angle of the enlarged triangle is 75° because $25 \times 3 = 75$ "

Is Ben right? Explain your answer.

Question 11 (AO2): 48% of students got this right (5 marks)

14. George is going to buy exactly 10 ink cartridges.

Find the difference in cost between the cheapest way and the most expensive way to buy the 10 ink cartridges.

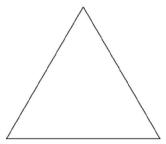
Question Order Created by Pinpoint Learnings Automatic Differantiation Algorithmn

Question 12 (AO1): 48% of students got this right (3 marks)

7 Jaroslav puts some items into his rucksack.

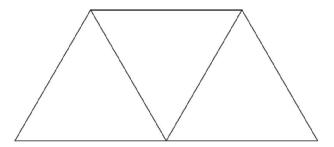
The table shows the weight of each item.

Item	Weight
2 apples	120 g each
2 bottles of water	524 g each
camera	474 g
map	86 g
mobile phone	214 g
umbrella	339 g


The rucksack has a weight of 275 g.

Work out the total weight of the rucksack and all the items.

Give your answer in kilograms.


Question 13 (AO3): 48% of students got this right (3 marks)

4. Here is an equilateral triangle.

The equilateral triangle has a perimeter of 24 cm.

Three of these equilateral triangles are used to make this trapezium.

Work out the perimeter of the trapezium.

cm
(Total 3 marks)

Question 14 (AO1): 48% of students got this right (1 marks)

21
$$p^3 \times p^x = p^9$$

(a) Find the value of x.

Question 15 (AO1): 47% of students got this right (1 marks)

1 Circle the cube number.

[1 mark]

4

8

25

9

Question 16 (AO2): 47% of students got this right (2 marks)

- 14 a and b are odd numbers.
 - (a) Give an example to show that the value of 2(a + b) is a multiple of 4.

Question 17 (AO2): 47% of students got this right (4 marks)

17. A machine makes 36 trophies every hour.

The machine makes trophies for $8\frac{1}{2}$ hours each day, on 5 days of the week.

The trophies are packed into boxes. Each box holds 8 trophies.

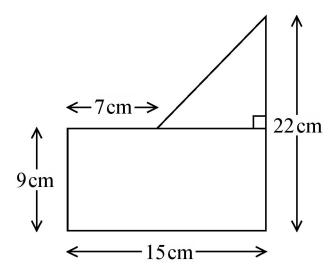
How many boxes are needed for all the trophies made each week?

Question 18 (AO1): 46% of students got this right (2 marks)

16.	Fayyaz bought a mobile phone for £180 He sold it at a profit of 22%
	How much money did Fayyaz sell the mobile phone for?
	(Total for Question 16 is 2 marks)
	(Total for Question To is 2 marks)

Question 19 (AO1): 46% of students got this right (2 marks)

(d) Expand and simplify (x + 4)(x + 7)9.

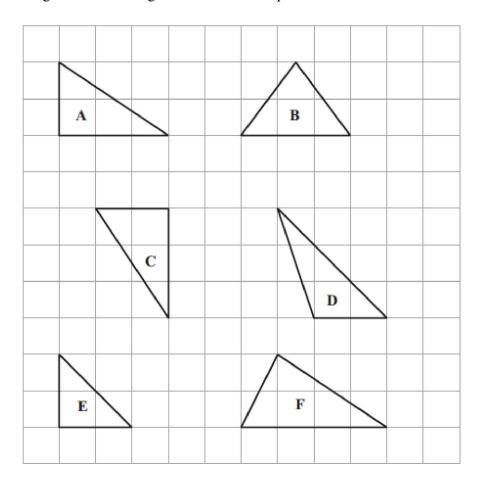

(2)

Question 20 (AO1): 45% of students got this right (1 marks)

		(Total for Question 7 is 1 mark)
	What is the probability that a new fridge does not have a fa	ult?
7	The probability that a new fridge has a fault is 0.015.	

Question 21 (AO1): 44% of students got this right (3 marks)

13 Here is a shape made from a rectangle and a triangle.


Work out the total area of the shape.

Question 22 (AO3): 44% of students got this right (3 marks)

8	There are 258 pupils at a school. 135 of the pupils are boys.	
	$\frac{3}{5}$ of the boys walk to school.	
	$\frac{2}{3}$ of the girls walk to school.	
	Work out how many pupils walk to school.	
		(Total for Question 8 is 3 marks)

Question 23 (AO1): 44% of students got this right (2 marks)

17. Here are 6 triangles drawn on a grid of centimetre squares.

(a)	write down the letters of the two congruent triangles.	
		(1)
(b)	Write down the letter of an isosceles triangle.	
		(1)

Question 24 (AO2): 43% of students got this right (2 marks)

5c

Here is a sequence of patterns made from grey squares and white squares.					
pattern number 1 pattern number 2 pattern number 3					
Aqsa says,					
"The total number of squares needed to make pattern number 20 is double the total number of squares needed to make pattern number 10"					
(c) Is Aqsa correct? Give a reason for your answer.					
(2)					

Question 25 (AO1): 43% of students got this right (5 marks)

4	-	TT			1	1 .
	1.	Here	10	9	number	machine.
1	1.	11010	10	а	Humber	macmine.

(a) Work out the out	out when the	input is 5
----------------------	--------------	------------

(1)

(b) Work out the input when the output is -5.

(2)

The input is *x* and the output is *y*.

(c) Write y in terms of x.

(2)

(Total 5 marks)

Question 26 (AO2): 43% of students got this right (1 marks)

8 Here are the first five numbers in a sequence.

47 41 35 29 23

Sarah says,

"-100 is **not** a number in this sequence."

(b) Is Sarah correct? Explain why.

Question 27 (AO1): 43% of students got this right (2 marks)

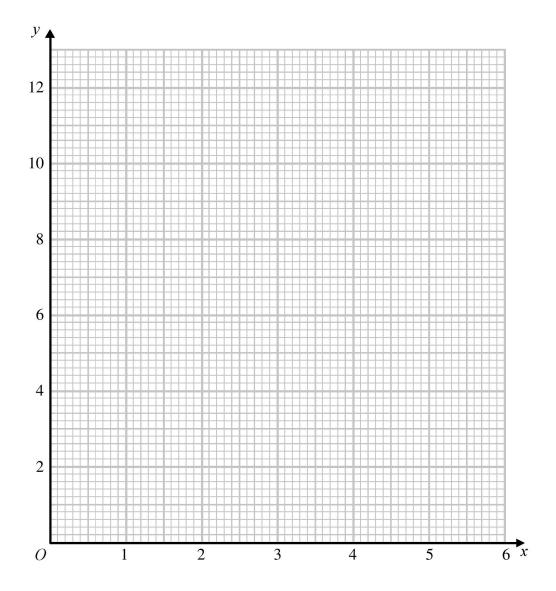
17 (c) Solve 9(c-6) = 63

Question 28 (AO1): 41% of students got this right (2 marks)

4 $\frac{4}{5}$ of a number is 32.

Find the number.

(Total for Question 4 is 2 marks)


Question 29 (AO1): 41% of students got this right (4 marks)

22 (a) Complete the table of values for $y = \frac{6}{x}$

х	0.5	1,	1.5	2	3	4	5	6
у		6		3		1.5		

(2)

(b) Draw the graph of $y = \frac{6}{x}$ for values of x from 0.5 to 6.

Question 30 (AO3): 41% of students got this right (3 marks)

19. Eric travels from the UK to India every year.

In 2010, the exchange rate was £1 = 67.1 rupees. In 2012, the exchange rate was £1 = 82.5 rupees.

In 2010 Eric changed £600 into rupees.

How many pounds (£) did Eric have to change to rupees in 2012 to get the same number of rupees as he did in 2010?

Question 31 (AO1): 40% of students got this right (2 marks)

6 Katy is facing North.

She does a three-quarter turn anti-clockwise.

She then turns 45° clockwise.

What direction is she facing now?

[2 marks]

Question 32 (AO1): 40% of students got this right (4 marks)

	f =
f is 160 greater than g	
agers	(-)
	(1)
greatest number T can be.	
that $7 < T < 15$	
	that $7 < T < 15$ greatest number T can be. egers. $f + g = 500$ $f \text{ is } 160 \text{ greater than } g$ where g and g is an g and g and g is g .

Question 33 (AO2): 39% of students got this right (2 marks)

13. (b) Show that
$$\frac{1}{3} + \frac{4}{15} = \frac{3}{5}$$

(2)

(Total 4 marks)

Question 34 (AO1): 39% of students got this right (2 marks)

16 The table shows information about the number of children in each of 40 families.

Number of children	Frequency
0	6
1	13
2	12
3	7
4	2
5 or more	0

(b) Work out the total number of children.

Ext Qn1 (AO2): Only 32% of students got this right(1 marks)

Write down the value of the 3 in 16.35.

Ext Qn2 (AO2): Only 32% of students got this right(4 marks)

- 17 ABC is an isosceles triangle. When angle $A = 70^{\circ}$, there are 3 possible sizes of angle B.
 - (a) What are they?

When angle $A = 120^{\circ}$, there is only one possible size of angle B.

(b) Explain why.

Ext Qn3 (AO2): Only 32% of students got this right(2 marks)

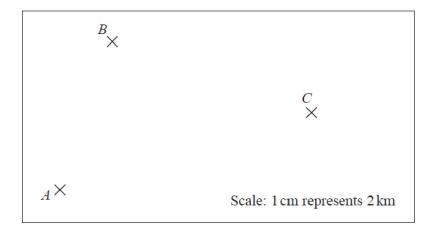
17. (a) Expand and simplify (x+9)(x-3)

.....

(2)

Answers to Qn 1 (AO2): 55% of students got this right

10	Draw two straight lines inside the rectangle to split it into	
	1 trapezium	
	and	
	2 right-angled triangles.	[2 marks]
	Practise on this diagram.	
	Put your answer on this diagram.	
Solutions	(One of the following):	


Answers to Qn 2 (AO2): 53% of students got this right

Question 10 (Total 4 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Letters2send: $150 \div 25 = 6$ Stationery World: $150 \div 10 = 15$, so only 10 packs to be paid for	P1	This mark is given for the start of a process to find comparable costs at each shop
	Letters2send: $6 \times 3.49 = 20.94$	P1	This mark is given for a process to find the cost of envelopes from Letters2send
	Stationery World: $10 \times 2.10 = 21.00$	P1	This mark is given for a process to find the cost of envelopes from Stationery World
	Suha should buy envelopes from Letters2send	C1	This mark is given for a correct conclusion with correct supporting values

Answers to Qn 3 (AO2): 53% of students got this right

10 This accurate scale drawing shows the positions of three villages, A, B and C.

Tom walks from *A* to *B*. He then walks from *B* to *C*.

Amy walks from *A* to *C*.

Tom walks more kilometres than Amy walks.

How many more?

$$AB + BC - AC = 4.5 + 6 - 7.5 = 3 \text{ cm}$$

3 × 2 = 6 km

Answers to Qn 4 (AO1): 52% of students got this right

Part	Working an or answer examiner might expect to see	Mark	Notes
4 (a)	$4 \times 125 = 500$	1	This mark is given for finding the total weight of one type of fruit eg
	or		January 1971
	$2 \times 120 = 340$		
	or $3 \times 135 = 405$		
	1785 - (500 + 340 + 405) = 540	1	This mark is given for finding the total weight of the oranges
	$540 \div 90 = 6$	1	This mark is given for the correct answer only
	Question Order Created by Pinpo	int Lear	nings Automatic Differentiation Algorithm

Answers to Qn 5 (AO1): 51% of students got this right

Quest	tion	Working	Answer	Mark	Notes
5			125	2	M1 for complete method using graph
					eg 50 euros = £42; 42×3
					A1 for 122 – 128
		Question Order Creat	ed by Pinpoin	t I earni	ngs Automatic Differentiation Algorithmn
		20000011 01001 01001			-geriale Billerenadori rilgerialini

Answers to Qn 6 (AO2): 49% of students got this right

11.	(a)	12	2	M1 for $9 \times 4 \div 3$ oe
				A1 cao
	(b)	6	3	M1 for a correct first step e.g. $20 \times 3 \ (= 60)$ or $20 \div 10 \ (= 2)$ or giving equation e.g. $10h \div 3 = 20$
				M1 for complete method to give height e.g. '60' \div 10 or '2' \times 3 or $h = 20 \times 3 \div$ 10 oe
				A1 cao

Answers to Qn 7 (AO1): 49% of students got this right

2 Any even cube B1 for any even cube number cube	
--	--

Answers to Qn 8 (AO1): 49% of students got this right

11	1 6 8 9	Diagram	B2	for a fully correct diagram
	2 2 2 3 3 4 5 8		(B1)	for an ordered diagram with one error or omission or for an unordered diagram)
	3 1 3 4			
	4 0 4		B1	for an appropriate key
	key 41 is 41			

Answers to Qn 9 (AO1): 49% of students got this right

Question	Working	Answer	Mark	Notes
18		334.4(0)	P1	for process to find 12% of 5700 or 88% of 5700,
				e.g. 0.12×5700 (= 684) or 0.88×5700 (= 5016)
			P1	(dep on P1) for a complete process to find the value of each payment, e.g. (5700 – "684") ÷ 15 or "5016" ÷ 15
			A1	cao; condone missing 0

Answers to Qn 10 (AO2): 49% of students got this right

Paper 1MA1	l: 2F			
Question	Working	Answer	Notes	
9		No + explanation	C1 No, with explanation, eg the angle will still be 25°	
Q	uestion Order Created	d by Pinpoint L	Learnings Automatic Differentiation Alg	ori.

Answers to Qn 11 (AO2): 48% of students got this right

Que	stion	Working	Answer	Mark	Notes
Ques 14.	stion	Working 9.39 × 10 24.30 × 3 + 9.39 93.90 - 82.29	Answer £11.61	Mark 5	Notes M1 for a correct method to find the most expensive way to buy the 10 cartridges (= 93.90) M1 for a correct method to find the least expensive way to buy the 10 cartridges (= 82.29) M1 (dep on M1 scored) for a correct method to find the difference between their least and their most
					expensive way, provided that both totals are for the cost of exactly 10 cartridges A1 for 11.61 B1 (indep) for correct units

Answers to Qn 12 (AO1): 48% of students got this right

Question	Working	Answer	Mark	Notes
7		2.676	M1	for method to find total weight of at least 4 items,
				e.g. 2 × 120 + 2 × 524 + 474 + 86 + 214 + 339 + 275
			B1	for change in units, e.g. 2676 ÷ 1000
			A1	cao
	Question Order Cre	ated by Pinpoint I	Learning	s Automatic Differentiation Algorithm

Answers to Qn 13 (AO3): 48% of students got this right

Question	Working	Answer	Mark	Notes
4.		40	3	M1 for 24 ÷ 3 (= 8)
				M1 for "8"× 5
				A1 cao
				OR
				M1 for $3 \times 24 \ (= 72)$
				M1 for " 3×24 " $-8 - 8 - 8 - 8$
				A1 cao
	Question Order	Created by Pinpoint L	earnings	Automatic Differentiation Algorithm

Answers to Qn 14 (AO1): 48% of students got this right

Part	Working or answer an examiner might expect to see	Mark	Notes
21 (a)	6	1	This mark is given for the correct answer only
	Question Order Created by Pinp	oint Leai	nings Automatic Differentiation Algorithr

Answers to Qn 15 (AO1): 47% of students got this right

1 Circle the cube number. [1 mark]
4 8 25 9

Answers to Qn 16 (AO2): 47% of students got this right

Part	Working or answer an examiner might expect to see	Mark	Notes
14 (a)	$a = 1, b = 3$, then $2 \times (1 + 3) = 8$	1	This mark is given for choosing two odd numbers and working out $2(a = b)$
	$8 \div 4 = 2$, so 8 is a multiple of 4	1	This mark is given for a correct statement
	Question Order Created by Pinns	int I ear	nings Automatic Differentiation Algorithm
	gassisii sidai sisatta by i inpe	Loan	

Answers to Qn 17 (AO2): 47% of students got this right

Que	stion	Working	Answer	Mark	Notes
17		$36 \times 8.5 \times 5 = 1530$	191 or 192	4	M2 $36 \times 8.5 \times 5$ (M1 for the product of
		$1530 \div 8 = 191.25$			any two of these terms)
		or could plan for			M1 (dep on at least M1 achieved) ÷ 8
		191, 191, 191 then 192			A1 cao
		Question Order	Created by Pinnoir	t Learni	ings Automatic Differentiation Algorithmn
		Quodion order		Loaiiii	ige / Geomado Dinoronadion / igonalinii

Answers to Qn 18 (AO1): 46% of students got this right

16	219.60	M1	180 × 1.22 oe
		A1	Accept 219.6

Answers to Qn 19 (AO1): 46% of students got this right

	9. (d)	$x^2 + 4x + 7x + 28$	2	M1 for 3 correct terms out of 4 or for 4 correct terms, ignoring signs	
				or for $x^2 + 11x + c$ for any non-zero value of c or for + $11x + 28$	
		$x^2 + 11x + 28$		A1	

Answers to Qn 20 (AO1): 45% of students got this right

Question 7 (Total 1 mark)

Part	Working or answer an examiner might		Notes
	expect to see		
	1 - 0.015 = 0.985	B1	This mark is given for the correct answer only

Answers to Qn 21 (AO1): 44% of students got this right

Question	Working	Answer	Mark	Notes
13		187	M1	for a method to find a missing length,
				e.g. 15 – 7 (= 8) or 22 – 9 (= 13) (may be seen on the diagram)
			M1	for a method to find the area of the triangle,
				e.g. $((15-7) \times (22-9)) \div 2 (= 52)$
				or to find the area of the rectangle, e.g. 9 × 15 (= 135)
			A1	cao

Answers to Qn 22 (AO3): 44% of students got this right

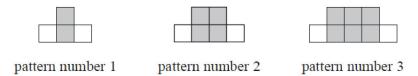
- 8 There are 258 pupils at a school. 135 of the pupils are boys.
 - $\frac{3}{5}$ of the boys walk to school.
 - $\frac{2}{3}$ of the girls walk to school.

Work out how many pupils walk to school.

$$\frac{3}{5} \times 135 = 81$$
 boys walk to school

$$258 - 135 = 123$$
 girls

$$\frac{2}{3}$$
 × 123 = 82 girls walk to school


81 + 82 = **163 pupils** walk to school.

Answers to Qn 23 (AO1): 44% of students got this right

Que	estion	Working	Answer	Mark	Notes
17	(a)		A and C	1	B1 for A and C (no extras)
	(b)		B or E	1	B1 for B or E (or both) (no extras)
		Question Order Creat	ed by Pinnoin	t Learni	ngs Automatic Differentiation Algorithmn

Answers to Qn 24 (AO2): 43% of students got this right

5c Here is a sequence of patterns made from grey squares and white squares.

Aqsa says,

"The total number of squares needed to make pattern number 20 is double the total number of squares needed to make pattern number 10"

(c) Is Aqsa correct?
Give a reason for your answer.

Nth term:
$$2n + 2$$

 $n = 10 (2(10) + 2) = 22$
 $n = 20 (2(20) + 2) = 42$

Pattern number 20 is not double Pattern number 10

Answers to Qn 25 (AO1): 43% of students got this right

Que	estion	Working	Answer	Mark	Notes
11.	(a)		23	1	B1
	(b)	$(-5-3) \div 4$	-2	2	M1 A1
	(c)		y = 4x + 3	2	B2 for $y = 4x + 3$ oe If not B2 then B1 for $4x + 3$ or $x = (y - 3) \div 4$
		Question Order	Created by Pinpoint L	earnings	Automatic Differentiation Algorith

Answers to Qn 26 (AO2): 43% of students got this right

Quest	ion	Working	Answer	Mark	Notes
	b)	Working	Answer Yes (supported)	Mark B1	Yes, with explanation, e.g. (–)100 is even but all other numbers are odd oe
		Question Order Cre	ated by Pinpoint I	_earnings	s Automatic Differentiation Algorithmr

Answers to Qn 27 (AO1): 43% of students got this right

Question	Working	Answer	Mark	Notes
17 (c)		13	M1	for correct expansion of the bracket, or for intention to divide both sides by 9 as the first step
			A1	cao
	Question Order Created b	y Pinpoint Learnings A	lutomati	c Differentiation Algorithn

Answers to Qn 28 (AO1): 41% of students got this right

Paper: 1M	A1/3F			
Question	Working	Answer	Mark	Notes
4		40	M1	for $32 \div 4 (= 8)$ or $32 \times 5 (=$
				160) or complete method eg 32
				$\div 4 \times 5$ oe (= 40)
			A1	Cao
	Ougstion Order Created	by Pinnoint Loor	nings A	tomatic Differentiation Algor
	QUESTION OTHER CITEBLES	DY FILIDUILIL LEAL	III IYS AL	nomano pinerennianon Algor

Answers to Qn 29 (AO1): 41% of students got this right

Paper: 1MA1/3	Paper: 1MA1/3F						
Question	Question Working		Mark	Notes			
22 (a)		12, 4, 2, 1.2, 1	B2	for fully correct table (allow fractions or			
				decimals)			
			(B1)	for 3 or 4 of 12, 4, 2, 1.2, 1			
(b)		Correct curve	M1	ft (dep on B1 in (a)) for plotting at least 6			
				points from their table correctly			
			A1	for a fully correct curve			

Answers to Qn 30 (AO3): 41% of students got this right

Que	stion	Working	Answer	Mark	Notes
19			488	3	M1 600 × 67.1 (= 40260) or 67.1 ÷ 82.5 (= 0.813)
					M1 (dep) "40260" ÷ 82.5 or "0.813" × 600
					A1 cao
					SC: B2 for 712
		Question Order	Created by Pinpoir	t Learni	ngs Automatic Differentiation Algorithmn

Answers to Qn 31 (AO1): 40% of students got this right

6	Katy is facing North. She does a three-quarter turn anti-clockwise. She then turns 45° clockwise. What direction is she facing now?	
	N •	[2 marks]
	Three-quarter turn anti-clockwise = quarter turn of 90 + 45	clockwise (90°)
	Answer135	0

Answers to Qn 32 (AO1): 40% of students got this right

8 (a)	14	B1	cao
(b)	330,170	P1	for a correct first step, e.g. $500 - 160$ or two integers that add to 500 or two integers (below 500) with a difference of 160
		P1 A1	for a complete process to find either f or g for both values

Answers to Qn 33 (AO2): 39% of students got this right

13.	(b)	$\frac{5}{15} + \frac{4}{15}$ or $\frac{5+4}{15}$	9 15	2	M1 for 2 fractions equivalent to $\frac{1}{3}$ and $\frac{4}{15}$ with a common denominator e.g. $\frac{15}{45} + \frac{12}{45}$ or $\frac{15+12}{45}$
					A1 dep on M1 for fraction equivalent to $\frac{9}{15}$ (but not $\frac{3}{5}$) produced directly from M1

Answers to Qn 34 (AO1): 39% of students got this right

Question	Working	Answer	Mark	Notes
16 (b)		66	M1	for method for calculating at least 4 values fx values correctly
			A 1	cao

Ext ANSWERS 1 (AO2): Only 32% of students got this right(1 mark

Paper 1MA	A1: 2F		
Question	Working	Answer	Notes
1		3 tenths or $\frac{3}{10}$	B1
		10	
	Ougstion Order Create	d by Pinnoint Loornings	lutomatic Differentiation Algori
	wacsuun Oldel Gledle	u by Filipoliti Leathiligs F	ndiomalic Differentiation Algori

Ext ANSWERS 2 (AO2): Only 32% of students got this right(4 mark

Paper 1MA1: 3F			
Question	Working	Answer	Notes
17(a)		70, 40 and 55	P1 for a method to find one of
			angles eg $(180 - 70) \div 2 \text{ or } 70$
			stated as the equal or $180 - 2 \times 70$
			P1 for a method to find a angle
7(1)		F 1 2	A1 for 70, 40 and 55 (any order)
7(b)		Explanation	C1 F 1
			C1 Explanation eg only one
			option once an obtuse angle given
		D	A Constitution of the state of
Ques	tion Order Create	p by Pinpoint Learnings	Automatic Differentiation Algo
1			ı

Ext ANSWERS 3 (AO2): Only 32% of students got this right(2 mark

17	(a) $x^2 + 9x - 3x - 27$	$x^2 + 6x - 27$	2	M1 for 3 out of 4 terms correct or 4 terms correct ignoring signs
				A1